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ABSTRACT 

Postoperative communicating hydrocephalus has been 
recognized in patients with brain tumors.  The associated 
changes in ventricle volume can be difficult to identify, 
particularly over short time intervals.  Potentially, accurate 
ventricle volume estimates could provide for a better 
understanding of communicating hydrocephalus, and lead 
to more confident diagnoses.  Our method evaluates 
ventricle size from serial brain MRI examinations, we 1) 
combined serial images to increase SNR 2) segmented this 
image to generate a ventricle template using fats marching 
methods and geodesic active contours, and 3) propagate the 
segmentation using deformable registration of the original 
MRI datasets. By applying this deformation to the ventricle 
template, serial volume estimates were obtained in a robust 
manner. 

INDEX TERMS: Brain imaging, MRI, brain tumor, 
hydrocephalus, segmentation, registration, monitoring. 

1. INTRODUCTION 

Serial brain MRI examinations are performed to monitor 
tumor size in patients with such brain lesions. The routine 
use of high resolution 3D imaging and coregistration 
facilitates such evaluation.  In addition, the routine clinical 
observation of such coregistered studies suggests that that 
ventricle size progressively increases in many of these 
patients. This is a poorly documented phenomenon, likely 
representing a communicating hydrocephalus [4]. The 
etiology is unclear, and is possibly related to the 
introduction of blood and proteins into the cerebral-spinal 
fluid (CSF) during surgery. 

The change in ventricular size may be quite subtle even 
by comparison of coregistered images. Thus, it is desirable 
to identify the incidence of the phenomenon, and to correlate 
the presence or absence of such a phenomenon with clinical 
symptoms. Therefore, we sought an objective method to 

systematically characterize the clinical observation of 
progressive ventriculomegaly in this group. 

In previous work, ventricles were segmented using 
region-growing combined with anatomical knowledge [9] in 
images of high quality. Holden et al. [2] used non-rigid 
registration combined with data from an atlas to segment 
brain ventricles, relying on the high performance of the 
registration algorithm. The registration with an atlas is also 
addressed in [6] using an expectation-maximization joint 
model. Most recently, Hu and Collins [3] proposed a model-
based segmentation on multi-modality MR images. 

Many prior studies deal with high resolution data from 
uniform data sets. Because our data comes from patients 
with brain tumors on a number of different imaging 
platforms, image contrast can be quite variable and signal-to 
noise ratio (SNR) low.  Therefore, our method was designed 
to exploit patient-specific data for better-adapted intra-
patient non-rigid registration, less sensitive to image quality 
and the anatomical variability of brain tumor patients. Mean 
T1 images with increased SNR provide the input for the fine 
segmentation based on geodesic active contours. Hence, no 
correction for inhomogeneous signal intensity is required. 
Finally, the mean ventricular shape is adaptively propagated 
through the temporal data to quantify size changes.  

2. METHOD 

Data acquisitions 

Patients with brain tumors evaluated at the Clinical Center of 
the NIH were scanned on 1.5 T GE (Milwaukee, WI) or 3 T 
Philips (Best, Netherlands) MR systems at approximately 1 
to 3 month intervals.  As part of the routine clinical imaging, 
3D T1 weighted sequences were obtained following 
injection of an intravenous contrast agent.  On the 1.5 T 
scanner a 3D SPGR technique was used with TR 12 ms; TE 
5 ms; flip angle 20 degrees; 240 cm FOV; 256 matrix 
sagittal acquisition, 152 slices 2 mm thick with 1 mm 
overlap.  On the 3.0 T scanner the parameters were TR 5 ms; 
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TE 2 ms; flip angle 15 degrees, 240 cm FOV, 256 matrix; 1 
mm slice thickness (no overlap). 

Preprocessing 

For each patient, the 3D datasets were coregistered to the 
first dataset in the series using FLIRT (FMRIB, Oxford, 
UK) under MEDx (Medical Numerics, Sterling, VA).  
Coregistration was done by a 6 parameter rigid body 
transformation (translation + rotation) using a least squares 
cost function.  To normalize the dataset, a large ~100 cc3

volume of interest (VOI) was automatically placed in the 
brain volume in relation to its center of mass.  The histogram 
of this VOI was used to identify the modal signal intensity, 
presumably representing white matter. Each dataset was
normalized by dividing by this value, and a high SNR 
“mean” image was generated for each patient by averaging 
the time point datasets using AFNI 
(http://afni.nimh.nih.gov/). Finally, smoothing was 
performed by anisotropic diffusion [5].  

Segmentation 

The second stage of the method is the segmentation of 
lateral ventricles and our approach uses a combination of 
fast marching and geodesic active contour level sets [1,8]. 
The fast marching method assumes that the surface can only 
expand staring from the seed point. The seed is provided by 
the user on the septum pellucidum (between the bodies of 
the lateral ventricles), as shown in Figure 1. The speed of 
expansion is constant and along the surface normal n. The 
MRI scan I provides the feature image, while the sigmoid of 
the gradient of I supplies the speed function Ie. The first 
segmentation given by the fast marching level set is If. 
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A better-adapted level set based on geodesic active 
contours in used to refine the fast marching segmentation 
[1]. To initialize the model, we use the fast marching 
segmentation as input level image (zero-level) into the 
geodesic active contour IL. The weights w1, w2 and w3
control respectively the speed c, curvature k and attraction to 
edges (Caselles et al. 1997). 
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Propagation 

A refinement of the intra-patient registration is required to 
compensate for the residual deformation not covered by the 
rigid registration used in preprocessing. Differences in the 

brain anatomy are mainly due to effects of therapeutic 
interventions, such as surgery and chemotherapy as well as 
disease progression (e.g. tumor growth or hydrocephalus).   
We propose employing the non-rigid registration algorithm 
based on B-splines [7].  

The deformation of objects is governed by an 
underlying mesh of control points in coarse to fine 
multiresolution approach. B-splines allow to locally control 
the deformation T and by varying the spacing between 
control points, the number of degrees of freedom is adapted 
to account for more global (affine) or local (non-rigid) 
transforms. Finally, a compromise between the similarity 
provided by mutual information M [10] and smoothing S is 
searched, where p(I,J) is the joint probability distribution of 
images I and J, and p(I) and p(J) their marginal 
distributions. For more detail on the B-spline definition of 
the transformation T, please refer to [7]. 
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The resulting deformation fields between the mean 
image and the temporary acquisitions of each patient are 
applied to the ventricle mask segmented from the mean 
image using a nearest-neighbor interpolation. The 
deformations are intra-patient and well defined, and provide 
a robust propagation of the segmentation.  

These processes were implemented under Visual C++ 
8.0 (Microsoft), OpenGL (SGI) and the Insight 
Segmentation and Registration Toolkit (ITK) 2.4 (Kitware, 
Inc.).  

Figure 1: The position of the user specified seed to initiate 
the ventricle segmentation on the mean image. Note the 
intermediate intensity of the tissue adjacent to the posterior 
portion of t he body of the right lateral ventricle.  This is due 
to the averaging of datasets at varying stages of ventricle 
dilation in this location. 
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3.  RESULTS 

Ventricle size was analyzed from six patients who were 
imaged with MRI between 8 and 25 times at one to three 
month intervals over a maximum of 3 years. The total 
number of time-point scans was 95. The results of the semi-
automated assessment method of ventricles from the T1 
brain MRI are shown in Figure 2. The MRI represents the 
mean image resulting from rigid transformation, intensity 
normalization and averaging. This mean image has increased 
the signal-to-noise ratio (SNR) as compared to a single scans 
(Figure 3). Subsequently, the lateral ventricles were 
segmented from the mean data, using fast marching and 
geodesic active contour level sets, as seen in Figure 2. 

To obtain the segmentation of ventricles on each scan of 
the time series, the mean image was registered to each 
individual scan of the same patient by non-rigid registration 
and the deformation fields were saved. This deformation 
field was then applied to the ventricle mask, thereby 
propagating the segmentation through each individual time 
point of the series.  An example of the robustness of the 3D 
segmentation of ventricles across the entire series of a 
patient’s temporal acquisition is shown in Figure 3. Results 
in the axial plane of temporal scans of a different patient are 
then presented in Figure 3. 

Figure 2: The 3D segmentation of brain ventricles from the 
mean image. Note the improved signal-to-noise-ratio (SNR) 
of the mean image, compared to SNR of data in Figure 3. 

For the quantification of segmentation/propagation 
results, we compared the data processed by our algorithm 
with manually-segmented data. A total of 15 individual MRI 
scans from 3 patients were analyzed (5 acquisitions/patient) 
and the manually measured volumes of the lateral ventricles 
were recorded. Figure 5 presents the temporal evolution of 

the automatically evaluated ventricular changes near the 
manually measured volumes (in mm3). The mean error in 
volume estimation is of 3.58% with a standard deviation of 
3.66. 

Figure 3: The 3D segmentation of brain ventricles from a 
single time point of a patient. 

Figure 4: Twelve coregistered MRI sets obtained at 1-3 
month intervals demonstrating the change in ventricle size 
over time, and the segmentation obtained.  The initial MRI 
is top left, and the final MRI is Bottom right.  The 
segmentation results correlate well with the steady increase 
in ventricular volume and change of ventricular shape. Note 
that there is considerable variation in image contrast due to 
changes in tumor and differences in scanners used. 

5. DISCUSSION 

The segmentation results are robust throughout the database 
and the segmentation propagation based on the deformation 
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fields accurate, as confirmed by experienced radiologists. 
The initial results show great promise toward an automated 
reliable tool for ventricular size change assessment and 
confirmation of radiological observations related to the 
possible relation between brain tumor resection and 
communicating hydrocephalus. 
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Figure 5: Manual versus semi-automatic ventricular size 
estimation. This example shows the automatic quantification 
of ventricular growth in a brain tumor patient, along the 
manual measurements o ventricular volume. 

First, intra-patient data were registered using a rigid 
transformation and normalized in intensity. A mean image 
was computed from the normalized temporal scans of each 
patient, which has increased signal-to-noise ratio (SNR) than 
temporal scans. Subsequently, the lateral ventricles were 
segmented from the mean data, using fast marching and 
geodesic active contour level sets. The mean image was 
registered to each temporal scan of the same patient by non-
rigid registration and the deformation fields were saved. 
Using the ventricle mask and the deformation fields, the 
segmentation was propagated through the temporal scans. 

There are several advantages to this technique.  Because 
the segmentation is initially performed on a high SNR 
dataset is used to define the ventricles in all the component 
data sets, it is not necessary for the segmentation to be 
successful on each individual dataset.  Therefore an 
individual dataset which is noisy or artefact ridden (e.g. 
from patient motion) can be evaluated. Furthermore, 
disruption of the ventricle border due to surgical 
intervention or tumor growth may cause region growing or 
level set segmentation to “leak out” of the ventricular 
system.  In this method, this needs only be dealt with on the 
mean data set and not on each individual data set. 

The main disadvantage of this technique is the 
computational overhead, prohibitive for the routine clinical 
use of such methods. Its reduction will be addressed in 
future work. A larger database and an extended evaluation of 
the method will follow. The algorithm will allow the 
distinction between cases that show an increase in 

ventricular size and those without hydrocephalus. Further 
development will lead to a fully-automated assessment 
method ready to be used in daily clinical practice and 
support the documentation of the tumor related brain 
atrophy. 
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